-
-
01-课程介绍[防断更微lxknumber1].ts
-
02-内容综述[防断更微lxknumber1].ts
-
03-AI概览:宣传片外的人工智能[防断更微lxknumber1].mp4
-
04-AI项目流程:从实验到落地[防断更微lxknumber1].mp4
-
05-NLP领域简介:NLP基本任务及研究方向[防断更微lxknumber1].mp4
-
06-NLP应用:智能问答系统[防断更微lxknumber1].mp4
-
07-NLP应用:文本校对系统[防断更微lxknumber1].mp4
-
08-NLP的学习方法:如何在AI爆炸时代快速上手学习?[防断更微lxknumber1].mp4
-
09-深度学习框架简介:如何选择合适的深度学习框架?[防断更微lxknumber1].mp4
-
10-深度学习与硬件:CPU[防断更微lxknumber1].mp4
-
100-WikiSQL任务简介[防断更微lxknumber1].mp4
-
101-ASDL和AST[防断更微lxknumber1].mp4
-
102-Tranx简介[防断更微lxknumber1].mp4
-
103-LambdaCaculus概述[防断更微lxknumber1].mp4
-
104-Lambda-DCS概述[防断更微lxknumber1].mp4
-
105-InductiveLogicProgramming:基本设定[防断更微lxknumber1].mp4
-
106-InductiveLogicProgramming:一个可微的实现[防断更微lxknumber1].mp4
-
107-增强学习的基本设定:增强学习与传统的预测性建模有什么区别?[防断更微lxknumber1].mp4
-
108-最短路问题和DijkstraAlgorithm[防断更微lxknumber1].mp4
-
109-Q-learning:如何进行Q-learning算法的推导?[防断更微lxknumber1].mp4
-
11-深度学习与硬件:GPU[防断更微lxknumber1].mp4
-
110-Rainbow:如何改进Q-learning算法?[防断更微lxknumber1].mp4
-
111-PolicyGradient:如何进行PolicyGradient的基本推导?[防断更微lxknumber1].mp4
-
112-A2C和A3C:如何提升基本的PolicyGradient算法[防断更微lxknumber1].mp4
-
113-Gumbel-trick:如何将离散的优化改变为连续的优化问题?[防断更微lxknumber1].mp4
-
114-MCTS简介:如何将“推理”引入到强化学习框架中[防断更微lxknumber1].mp4
-
115-DirectPolictyGradient:基本设定及Gumbel-trick的使用[防断更微lxknumber1].mp4
-
116-DirectPolictyGradient:轨迹生成方法[防断更微lxknumber1].mp4
-
117-AutoML及NeuralArchitectureSearch简介[防断更微lxknumber1].mp4
-
118-AutoML网络架构举例[防断更微lxknumber1].mp4
-
119-RENAS:如何使用遗传算法和增强学习探索网络架构[防断更微lxknumber1].mp4
-
12-深度学习与硬件:TPU[防断更微lxknumber1].mp4
-
120-DifferentiableSearch:如何将NAS变为可微的问题[防断更微lxknumber1].mp4
-
121-层次搜索法:如何在模块之间进行搜索?[防断更微lxknumber1].mp4
-
122-LeNAS:如何搜索搜索space[防断更微lxknumber1].mp4
-
123-超参数搜索:如何寻找算法的超参数[防断更微lxknumber1].mp4
-
124-Learningtooptimize:是否可以让机器学到一个新的优化器[防断更微lxknumber1].mp4
-
125-遗传算法和增强学习的结合[防断更微lxknumber1].mp4
-
126-使用增强学习改进组合优化的算法[防断更微lxknumber1].mp4
-
127-多代理增强学习概述:什么是多代理增强学习?[防断更微lxknumber1].mp4
-
128-AlphaStar介绍:AlphaStar中采取了哪些技术?[防断更微lxknumber1].mp4
-
129-IMPALA:多Agent的Actor-Critic算法[防断更微lxknumber1].mp4
-
13-AI项目部署:基本原则[防断更微lxknumber1].mp4
-
130-COMA-Agent之间的交流[防断更微lxknumber1].mp4
-
131-多模态表示学习简介[防断更微lxknumber1].mp4
-
132-知识蒸馏:如何加速神经网络推理[防断更微lxknumber1].mp4
-
133-DeepGBM:如何用神经网络捕捉集成树模型的知识[防断更微lxknumber1].mp4
-
134-文本推荐系统和增强学习[防断更微lxknumber1].mp4
-
135-RL训练方法集锦:简介[防断更微lxknumber1].mp4
-
136-RL训练方法-RL实验的注意事项[防断更微lxknumber1].mp4
-
137-PPO算法[防断更微lxknumber1].mp4
-
138-Reward设计的一般原则[防断更微lxknumber1].mp4
-
139-解决SparseReward的一些方法[防断更微lxknumber1].mp4
-
14-AI项目部署:框架选择[防断更微lxknumber1].mp4
-
140-ImitationLearning和Self-imitationLearning[防断更微lxknumber1].mp4
-
141-增强学习中的探索问题[防断更微lxknumber1].mp4
-
142-Model-basedReinforcementLearning[防断更微lxknumber1].mp4
-
143-TransferReinforcementLearning和Few-shotReinforcementLearning[防断更微lxknumber1].mp4
-
144-Quora问题等价性案例学习:预处理和人工特征[防断更微lxknumber1].mp4
-
145-Quora问题等价性案例学习:深度学习模型[防断更微lxknumber1].mp4
-
146-文本校对案例学习[防断更微lxknumber1].mp4
-
147-微服务和Kubernetes简介[防断更微lxknumber1].mp4
-
148-Docker简介[防断更微lxknumber1].mp4
-
149-Docker部署实践[防断更微lxknumber1].mp4
-
15-AI项目部署:微服务简介[防断更微lxknumber1].mp4
-
150-Kubernetes基本概念[防断更微lxknumber1].mp4
-
151-Kubernetes部署实践[防断更微lxknumber1].mp4
-
152-Kubernetes自动扩容[防断更微lxknumber1].mp4
-
153-Kubernetes服务发现[防断更微lxknumber1].mp4
-
154-KubernetesIngress[防断更微lxknumber1].mp4
-
155-Kubernetes健康检查[防断更微lxknumber1].mp4
-
156-Kubernetes灰度上线[防断更微lxknumber1].mp4
-
157-KubernetesStatefulSets[防断更微lxknumber1].mp4
-
158-Istio简介:Istio包含哪些功能?[防断更微lxknumber1].mp4
-
159-Istio实例和CircuitBreaker[防断更微lxknumber1].mp4
-
16-统计学基础:随机性是如何改变数据拟合的本质的?[防断更微lxknumber1].mp4
-
160-结束语[防断更微lxknumber1].mp4
-
17-神经网络基础:神经网络还是复合函数[防断更微lxknumber1].mp4
-
18-神经网络基础:训练神经网络[防断更微lxknumber1].mp4
-
19-神经网络基础:神经网络的基础构成[防断更微lxknumber1].mp4
-
20-Embedding简介:为什么Embedding更适合编码文本特征?[防断更微lxknumber1].mp4
-
21-RNN简介:马尔可夫过程和隐马尔可夫过程[防断更微lxknumber1].mp4
-
22-RNN简介:RNN和LSTM[防断更微lxknumber1].mp4
-
23-CNN:卷积神经网络是什么?[防断更微lxknumber1].mp4
-
24-环境部署:如何构建简单的深度学习环境?[防断更微lxknumber1].mp4
-
25-PyTorch简介:Tensor和相关运算[防断更微lxknumber1].mp4
-
26-PyTorch简介:如何构造Dataset和DataLoader?[防断更微lxknumber1].mp4
-
27-PyTorch简介:如何构造神经网络?[防断更微lxknumber1].mp4
-
28-文本分类实践:如何进行简单的文本分类?[防断更微lxknumber1].mp4
-
29-文本分类实践的评价:如何提升进一步的分类效果?[防断更微lxknumber1].mp4
-
30-经典的数据挖掘方法:数据驱动型开发早期的努力[防断更微lxknumber1].mp4
-
31-表格化数据挖掘基本流程:看看现在的数据挖掘都是怎么做的?[防断更微lxknumber1].mp4
-
32-Pandas简介:如何使用Pandas对数据进行处理?[防断更微lxknumber1].mp4
-
33-Matplotlib简介:如何进行简单的可视化分析?[防断更微lxknumber1].mp4
-
34-半自动特征构建方法:TargetMeanEncoding[防断更微lxknumber1].mp4
-
35-半自动特征构建方法:CategoricalEncoder[防断更微lxknumber1].mp4
-
36-半自动特征构建方法:连续变量的离散化[防断更微lxknumber1].mp4
-
37-半自动特征构建方法:EntityEmbedding[防断更微lxknumber1].mp4
-
38-半自动构建方法:EntityEmbedding的实现[防断更微lxknumber1].mp4
-
39-半自动特征构建方法:连续变量的转换[防断更微lxknumber1].mp4
-
40-半自动特征构建方法:缺失变量和异常值的处理[防断更微lxknumber1].mp4
-
41-自动特征构建方法:Symboliclearning和AutoCross简介[防断更微lxknumber1].mp4
-
42-降维方法:PCA、NMF和tSNE[防断更微lxknumber1].mp4
-
43-降维方法:DenoisingAutoEncoders[防断更微lxknumber1].mp4
-
44-降维方法:VariationalAutoEncoder[防断更微lxknumber1].mp4
-
45-变量选择方法[防断更微lxknumber1].mp4
-
46-集成树模型:如何提升决策树的效果[防断更微lxknumber1].mp4
-
47-集成树模型:GBDT和XgBoost的数学表达[防断更微lxknumber1].mp4
-
48-集成树模型:LightGBM简介[防断更微lxknumber1].mp4
-
49-集成树模型:CatBoost和NGBoost简介[防断更微lxknumber1].mp4
-
50-神经网络建模:如何让神经网络实现你的数据挖掘需求[防断更微lxknumber1].mp4
-
51-神经网络的构建:ResidualConnection和DenseConnection[防断更微lxknumber1].mp4
-
52-神经网络的构建:NetworkinNetwork[防断更微lxknumber1].mp4
-
53-神经网络的构建:GatingMechanism和Attention[防断更微lxknumber1].mp4
-
54-神经网络的构建:Memory[防断更微lxknumber1].mp4
-
55-神经网络的构建:ActivationFunction[防断更微lxknumber1].mp4
-
56-神经网络的构建:Normalization[防断更微lxknumber1].mp4
-
57-神经网络的训练:初始化[防断更微lxknumber1].mp4
-
58-神经网络的训练:学习率和Warm-up[防断更微lxknumber1].mp4
-
59-神经网络的训练:新的PyTorch训练框架[防断更微lxknumber1].mp4
-
60-Transformer:如何通过Transformer榨取重要变量?[防断更微lxknumber1].mp4
-
61-Transformer代码实现剖析[防断更微lxknumber1].mp4
-
62-xDeepFM:如何用神经网络处理高维的特征?[防断更微lxknumber1].mp4
-
63-xDeepFM的代码解析[防断更微lxknumber1].mp4
-
64-时序建模:如何用神经网络解决时间序列的预测问题?[防断更微lxknumber1].mp4
-
65-图嵌入:如何将图关系纳入模型?[防断更微lxknumber1].mp4
-
66-图网络简介:如何在图结构的基础上建立神经网络?[防断更微lxknumber1].mp4
-
67-模型融合基础:如何让你所学到的模型方法一起发挥作用?[防断更微lxknumber1].mp4
-
68-高级模型融合技巧:Metades是什么?[防断更微lxknumber1].mp4
-
69-挖掘自然语言中的人工特征:如何用传统的特征解决问题?[防断更微lxknumber1].mp4
-
70-重新审视WordEmbedding:NegativeSampling和ContextualEmbedding[防断更微lxknumber1].mp4
-
71-深度迁移学习模型:从ELMo到BERT[防断更微lxknumber1].mp4
-
72-深度迁移学习模型:RoBERTa、XLNet、ERNIE和T5[防断更微lxknumber1].mp4
-
73-深度迁移学习模型:ALBERT和ELECTRA[防断更微lxknumber1].mp4
-
74-深度迁移学习模型的微调:如何使用TensorFlow在TPU对模型进行微调[防断更微lxknumber1].mp4
-
75-深度迁移学习模型的微调:TensorFlowBERT代码简析[防断更微lxknumber1].mp4
-
76-深度迁移学习的微调:如何利用PyTorch实现深度迁移学习模型的微调及代码简析[防断更微lxknumber1].mp4
-
77-优化器:Adam和AdamW[防断更微lxknumber1].mp4
-
78-优化器:Lookahead,Radam和Lamb[防断更微lxknumber1].mp4
-
79-多重loss的方式:如何使用多重loss来提高模型准确率?[防断更微lxknumber1].mp4
-
80-数据扩充的基本方法:如何从少部分数据中扩充更多的数据并避免过拟合?[防断更微lxknumber1].mp4
-
81-UDA:一种系统的数据扩充框架[防断更微lxknumber1].mp4
-
82-LabelSmoothing和LogitSqueezing[防断更微lxknumber1].mp4
-
83-底层模型拼接:如何让不同的语言模型融合在一起从而达到更好的效果?[防断更微lxknumber1].mp4
-
84-上层模型拼接:如何在语言模型基础上拼接更多的模型?[防断更微lxknumber1].mp4
-
85-长文本分类:截取、关键词拼接和预测平均[防断更微lxknumber1].mp4
-
86-VirtualAdverserialTraining:如何减少一般对抗训练难收敛的问题并提高结果的鲁棒性?[防断更微lxknumber1].mp4
-
87-其他Embedding的训练:还有哪些Embedding方法?[防断更微lxknumber1].mp4
-
88-训练预语言模型[防断更微lxknumber1].mp4
-
89-多任务训练:如何利用多任务训练来提升效果?[防断更微lxknumber1].mp4
-
90-DomainAdaptation:如何利用其它有标注语料来提升效果?[防断更微lxknumber1].mp4
-
91-Few-shotLearning:是否有更好的利用不同任务的方法?[防断更微lxknumber1].mp4
-
92-半监督学习:如何让没有标注的数据也派上用场?[防断更微lxknumber1].mp4
-
93-依存分析和SemanticParsing概述[防断更微lxknumber1].mp4
-
94-依存分析和UniversalDepdencyRelattions[防断更微lxknumber1].mp4
-
95-如何在Stanza中实现DependencyParsing[防断更微lxknumber1].mp4
-
96-ShiftReduce算法[防断更微lxknumber1].mp4
-
97-基于神经网络的依存分析算法[防断更微lxknumber1].mp4
-
98-树神经网络:如何采用TreeLSTM和其它拓展方法?[防断更微lxknumber1].mp4
-
99-SemanticParsing基础:SemanticParsing的任务是什么?[防断更微lxknumber1].mp4
-
每天两小时,副业收入过万咨询+V.png
-