-
-
-
01-频率视角下的机器学习[防断更微lxknumber1].md
-
01-频率视角下的机器学习[防断更微lxknumber1].mp3
-
01-频率视角下的机器学习[防断更微lxknumber1].pdf
-
02-贝叶斯视角下的机器学习[防断更微lxknumber1].md
-
02-贝叶斯视角下的机器学习[防断更微lxknumber1].mp3
-
02-贝叶斯视角下的机器学习[防断更微lxknumber1].pdf
-
03-学什么与怎么学[防断更微lxknumber1].md
-
03-学什么与怎么学[防断更微lxknumber1].mp3
-
03-学什么与怎么学[防断更微lxknumber1].pdf
-
04-计算学习理论[防断更微lxknumber1].md
-
04-计算学习理论[防断更微lxknumber1].mp3
-
04-计算学习理论[防断更微lxknumber1].pdf
-
05-模型的分类方式[防断更微lxknumber1].md
-
05-模型的分类方式[防断更微lxknumber1].mp3
-
05-模型的分类方式[防断更微lxknumber1].pdf
-
06-模型的设计准则[防断更微lxknumber1].md
-
06-模型的设计准则[防断更微lxknumber1].mp3
-
06-模型的设计准则[防断更微lxknumber1].pdf
-
07-模型的验证方法[防断更微lxknumber1].md
-
07-模型的验证方法[防断更微lxknumber1].mp3
-
07-模型的验证方法[防断更微lxknumber1].pdf
-
08-模型的评估指标[防断更微lxknumber1].md
-
08-模型的评估指标[防断更微lxknumber1].mp3
-
08-模型的评估指标[防断更微lxknumber1].pdf
-
09-实验设计[防断更微lxknumber1].md
-
09-实验设计[防断更微lxknumber1].mp3
-
09-实验设计[防断更微lxknumber1].pdf
-
10-特征预处理[防断更微lxknumber1].md
-
10-特征预处理[防断更微lxknumber1].mp3
-
10-特征预处理[防断更微lxknumber1].pdf
-
11-基础线性回归:一元与多元[防断更微lxknumber1].md
-
11-基础线性回归:一元与多元[防断更微lxknumber1].mp3
-
11-基础线性回归:一元与多元[防断更微lxknumber1].pdf
-
12-正则化处理:收缩方法与边际化[防断更微lxknumber1].md
-
12-正则化处理:收缩方法与边际化[防断更微lxknumber1].mp3
-
12-正则化处理:收缩方法与边际化[防断更微lxknumber1].pdf
-
13-线性降维:主成分的使用[防断更微lxknumber1].md
-
13-线性降维:主成分的使用[防断更微lxknumber1].mp3
-
13-线性降维:主成分的使用[防断更微lxknumber1].pdf
-
14-非线性降维:流形学习[防断更微lxknumber1].md
-
14-非线性降维:流形学习[防断更微lxknumber1].mp3
-
14-非线性降维:流形学习[防断更微lxknumber1].pdf
-
15-从回归到分类:联系函数与降维[防断更微lxknumber1].md
-
15-从回归到分类:联系函数与降维[防断更微lxknumber1].mp3
-
15-从回归到分类:联系函数与降维[防断更微lxknumber1].pdf
-
16-建模非正态分布:广义线性模型[防断更微lxknumber1].md
-
16-建模非正态分布:广义线性模型[防断更微lxknumber1].mp3
-
16-建模非正态分布:广义线性模型[防断更微lxknumber1].pdf
-
17-几何角度看分类:支持向量机[防断更微lxknumber1].md
-
17-几何角度看分类:支持向量机[防断更微lxknumber1].mp3
-
17-几何角度看分类:支持向量机[防断更微lxknumber1].pdf
-
18-从全局到局部:核技巧[防断更微lxknumber1].md
-
18-从全局到局部:核技巧[防断更微lxknumber1].mp3
-
18-从全局到局部:核技巧[防断更微lxknumber1].pdf
-
19-非参数化的局部模型:K近邻[防断更微lxknumber1].md
-
19-非参数化的局部模型:K近邻[防断更微lxknumber1].mp3
-
19-非参数化的局部模型:K近邻[防断更微lxknumber1].pdf
-
20-基于距离的学习:聚类与度量学习[防断更微lxknumber1].md
-
20-基于距离的学习:聚类与度量学习[防断更微lxknumber1].mp3
-
20-基于距离的学习:聚类与度量学习[防断更微lxknumber1].pdf
-
21-基函数扩展:属性的非线性化[防断更微lxknumber1].md
-
21-基函数扩展:属性的非线性化[防断更微lxknumber1].mp3
-
21-基函数扩展:属性的非线性化[防断更微lxknumber1].pdf
-
22-自适应的基函数:神经网络[防断更微lxknumber1].md
-
22-自适应的基函数:神经网络[防断更微lxknumber1].mp3
-
22-自适应的基函数:神经网络[防断更微lxknumber1].pdf
-
23-层次化的神经网络:深度学习[防断更微lxknumber1].md
-
23-层次化的神经网络:深度学习[防断更微lxknumber1].mp3
-
23-层次化的神经网络:深度学习[防断更微lxknumber1].pdf
-
24-深度编解码:表示学习[防断更微lxknumber1].md
-
24-深度编解码:表示学习[防断更微lxknumber1].mp3
-
24-深度编解码:表示学习[防断更微lxknumber1].pdf
-
25-基于特征的区域划分:树模型[防断更微lxknumber1].md
-
25-基于特征的区域划分:树模型[防断更微lxknumber1].mp3
-
25-基于特征的区域划分:树模型[防断更微lxknumber1].pdf
-
26-集成化处理:Boosting与Bagging[防断更微lxknumber1].md
-
26-集成化处理:Boosting与Bagging[防断更微lxknumber1].mp3
-
26-集成化处理:Boosting与Bagging[防断更微lxknumber1].pdf
-
27-万能模型:梯度提升与随机森林[防断更微lxknumber1].md
-
27-万能模型:梯度提升与随机森林[防断更微lxknumber1].mp3
-
27-万能模型:梯度提升与随机森林[防断更微lxknumber1].pdf
-
28-最简单的概率图:朴素贝叶斯[防断更微lxknumber1].md
-
28-最简单的概率图:朴素贝叶斯[防断更微lxknumber1].mp3
-
28-最简单的概率图:朴素贝叶斯[防断更微lxknumber1].pdf
-
29-有向图模型:贝叶斯网络[防断更微lxknumber1].md
-
29-有向图模型:贝叶斯网络[防断更微lxknumber1].mp3
-
29-有向图模型:贝叶斯网络[防断更微lxknumber1].pdf
-
30-无向图模型:马尔可夫随机场[防断更微lxknumber1].md
-
30-无向图模型:马尔可夫随机场[防断更微lxknumber1].mp3
-
30-无向图模型:马尔可夫随机场[防断更微lxknumber1].pdf
-
31-建模连续分布:高斯网络[防断更微lxknumber1].md
-
31-建模连续分布:高斯网络[防断更微lxknumber1].mp3
-
31-建模连续分布:高斯网络[防断更微lxknumber1].pdf
-
32-从有限到无限:高斯过程[防断更微lxknumber1].md
-
32-从有限到无限:高斯过程[防断更微lxknumber1].mp3
-
32-从有限到无限:高斯过程[防断更微lxknumber1].pdf
-
33-序列化建模:隐马尔可夫模型[防断更微lxknumber1].md
-
33-序列化建模:隐马尔可夫模型[防断更微lxknumber1].mp3
-
33-序列化建模:隐马尔可夫模型[防断更微lxknumber1].pdf
-
34-连续序列化模型:线性动态系统[防断更微lxknumber1].md
-
34-连续序列化模型:线性动态系统[防断更微lxknumber1].mp3
-
34-连续序列化模型:线性动态系统[防断更微lxknumber1].pdf
-
35-精确推断:变量消除及其拓展[防断更微lxknumber1].md
-
35-精确推断:变量消除及其拓展[防断更微lxknumber1].mp3
-
35-精确推断:变量消除及其拓展[防断更微lxknumber1].pdf
-
36-确定近似推断:变分贝叶斯[防断更微lxknumber1].md
-
36-确定近似推断:变分贝叶斯[防断更微lxknumber1].mp3
-
36-确定近似推断:变分贝叶斯[防断更微lxknumber1].pdf
-
37-随机近似推断:MCMC[防断更微lxknumber1].md
-
37-随机近似推断:MCMC[防断更微lxknumber1].mp3
-
37-随机近似推断:MCMC[防断更微lxknumber1].pdf
-
38-完备数据下的参数学习:有向图与无向图[防断更微lxknumber1].md
-
38-完备数据下的参数学习:有向图与无向图[防断更微lxknumber1].mp3
-
38-完备数据下的参数学习:有向图与无向图[防断更微lxknumber1].pdf
-
39-隐变量下的参数学习:EM方法与混合模型[防断更微lxknumber1].md
-
39-隐变量下的参数学习:EM方法与混合模型[防断更微lxknumber1].mp3
-
39-隐变量下的参数学习:EM方法与混合模型[防断更微lxknumber1].pdf
-
40-结构学习:基于约束与基于评分[防断更微lxknumber1].md
-
40-结构学习:基于约束与基于评分[防断更微lxknumber1].mp3
-
40-结构学习:基于约束与基于评分[防断更微lxknumber1].pdf
-
结课-终有一天,你将为今天的付出骄傲[防断更微lxknumber1].md
-
结课-终有一天,你将为今天的付出骄傲[防断更微lxknumber1].mp3
-
结课-终有一天,你将为今天的付出骄傲[防断更微lxknumber1].pdf
-
结课测试-这些机器学习知识你都掌握了吗?[防断更微lxknumber1].md
-
结课测试-这些机器学习知识你都掌握了吗?[防断更微lxknumber1].pdf
-
开篇词-打通修炼机器学习的任督二脉[防断更微lxknumber1].md
-
开篇词-打通修炼机器学习的任督二脉[防断更微lxknumber1].mp3
-
开篇词-打通修炼机器学习的任督二脉[防断更微lxknumber1].pdf
-
每天两小时,副业收入过万咨询+V.png
-
如何成为机器学习工程师?[防断更微lxknumber1].md
-
如何成为机器学习工程师?[防断更微lxknumber1].mp3
-
如何成为机器学习工程师?[防断更微lxknumber1].pdf
-
微信lxknumber1,避免失联、断更.png
-
总结课-贝叶斯学习的模型体系[防断更微lxknumber1].md
-
总结课-贝叶斯学习的模型体系[防断更微lxknumber1].mp3
-
总结课-贝叶斯学习的模型体系[防断更微lxknumber1].pdf
-
总结课-机器学习的模型体系[防断更微lxknumber1].md
-
总结课-机器学习的模型体系[防断更微lxknumber1].mp3
-
总结课-机器学习的模型体系[防断更微lxknumber1].pdf
-