❤️博哥万T资源库,连续7年运营,全站囊括21大品类,资源天花板就在这里,一次投入永久更新
❤️由于资源容量太大,本站仅支持部分资源搜索,部分精选区和书库仅供展示,请点到具体分类中再进行搜索
❤️VIP会员搭载专属目录,可实现全网搜索,无需登陆网盘,专享资源在线下载权益。
❤️开通VIP会员,同时送百万书库+领袖商学员名家课程+2025年最新知识付费平台课程+2025年最新抖音大V课程+500T阿里夸克迅雷资源
❤️无论是否加入会员,都可以添加微信:bogesxy,备注888,免费邀请进入最新的阿里夸克迅雷资源分享群,每天分享各类最新资源
2025启航二区
2025启航一区
2025领袖商学院
2024领袖商学院
2024更新十区
2024更新九区
2024更新八区
2024更新七区
2024更新六区
2024更新五区
2024更新四区
2024更新三区
2024更新二区
2024更新一区
精选七区
精选六区
精选五区
精选四区
精选三区
精选二区
精选一区
书库四区
书库三区
书库二区
书库一区
稀缺二区
稀缺一区
精选素材
知识学院二区
知识学院一区
当前目录
全盘
查全部
文件夹
文件
主页
/
【07】计算机与软件社群
/
【计算机与IT专区】
/
计算机与IT新课资源
/
打包8套机器学习课程
/
机器学习基石_国立台湾大学(林轩田)
/
1 - 1 - Course Introduction (10-58)(1).mp4
1 - 2 - What is Machine Learning (18-28).mp4
1 - 3 - Applications of Machine Learning (18-56)(1).mp4
1 - 4 - Components of Machine Learning (11-45)(1).mp4
1 - 5 - Machine Learning and Other Fields (10-21)(1).mp4
10 - 1 - Logistic Regression Problem (14-33).mp4
10 - 2 - Logistic Regression Error (15-58).mp4
10 - 3 - Gradient of Logistic Regression Error (15-38).mp4
10 - 4 - Gradient Descent (19-18)(1).mp4
11 - 1 - Linear Models for Binary Classification (21-35).mp4
11 - 2 - Stochastic Gradient Descent (11-39).mp4
11 - 3 - Multiclass via Logistic Regression (14-18).mp4
11 - 4 - Multiclass via Binary Classification (11-35).mp4
12 - 1 - Quadratic Hypothesis (23-47).mp4
12 - 2 - Nonlinear Transform (09-52).mp4
12 - 3 - Price of Nonlinear Transform (15-37).mp4
12 - 4 - Structured Hypothesis Sets (09-36).mp4
13 - 1 - What is Overfitting- (10-45).mp4
13 - 2 - The Role of Noise and Data Size (13-36).mp4
13 - 3 - Deterministic Noise (14-07).mp4
13 - 4 - Dealing with Overfitting (10-49).mp4
14 - 1 - Regularized Hypothesis Set (19-16).mp4
14 - 2 - Weight Decay Regularization (24-08).mp4
14 - 3 - Regularization and VC Theory (08-15).mp4
14 - 4 - General Regularizers (13-28).mp4
15 - 1 - Model Selection Problem (16-00).mp4
15 - 2 - Validation (13-24).mp4
15 - 3 - Leave-One-Out Cross Validation (16-06).mp4
15 - 4 - V-Fold Cross Validation (10-41).mp4
16 - 1 - Occam-s Razor (10-08).mp4
16 - 2 - Sampling Bias (11-50).mp4
16 - 3 - Data Snooping (12-28).mp4
16 - 4 - Power of Three (08-49).mp4
2 - 1 - Perceptron Hypothesis Set (15-42).mp4
2 - 2 - Perceptron Learning Algorithm (PLA) (19-46).mp4
2 - 3 - Guarantee of PLA (12-37).mp4
2 - 4 - Non-Separable Data (12-55).mp4
3 - 1 - Learning with Different Output Space (17-26).mp4
3 - 2 - Learning with Different Data Label (18-12).mp4
3 - 3 - Learning with Different Protocol (11-09).mp4
3 - 4 - Learning with Different Input Space (14-13).mp4
4 - 1 - Learning is Impossible- (13-32).mp4
4 - 2 - Probability to the Rescue (11-33).mp4
4 - 3 - Connection to Learning (16-46).mp4
4 - 4 - Connection to Real Learning (18-06).mp4
5 - 1 - Recap and Preview (13-44).mp4
5 - 2 - Effective Number of Lines (15-26).mp4
5 - 3 - Effective Number of Hypotheses (16-17).mp4
5 - 4 - Break Point (07-44).mp4
6 - 1 - Restriction of Break Point (14-18).mp4
6 - 2 - Bounding Function- Basic Cases (06-56).mp4
6 - 3 - Bounding Function- Inductive Cases (14-47).mp4
6 - 4 - A Pictorial Proof (16-01).mp4
7 - 1 - Definition of VC Dimension (13-10).mp4
7 - 2 - VC Dimension of Perceptrons (13-27).mp4
7 - 3 - Physical Intuition of VC Dimension (6-11).mp4
7 - 4 - Interpreting VC Dimension (17-13).mp4
8 - 1 - Noise and Probabilistic Target (17-01).mp4
8 - 2 - Error Measure (15-10).mp4
8 - 3 - Algorithmic Error Measure (13-46).mp4
8 - 4 - Weighted Classification (16-54).mp4
9 - 1 - Linear Regression Problem (10-08).mp4
9 - 2 - Linear Regression Algorithm (20-03).mp4
9 - 3 - Generalization Issue (20-34).mp4
9 - 4 - Linear Regression for Binary Classification (11-23).mp4
Copyright © All rights reserved.
信息加载中,请等待...