❤️博哥万T资源库,连续7年运营,全站囊括21大品类,资源天花板就在这里,一次投入永久更新
❤️由于资源容量太大,本站仅支持资源展示,不支持搜索,成为VIP会员后提供专享资源在线下载站点。
❤️开通VIP会员,同时送百万书库+领袖商学员名家课程+2025年最新知识付费平台课程+2025年最新抖音大V课程
❤️无论是否加入会员,都可以添加微信:bogesxy,备注888,免费邀请进入最新的阿里夸克迅雷资源分享群,每天分享各类最新资源
2025启航二区
2025启航一区
2025领袖商学院
2024领袖商学院
2024更新十区
2024更新九区
2024更新八区
2024更新七区
2024更新六区
2024更新五区
2024更新四区
2024更新三区
2024更新二区
2024更新一区
精选七区
精选六区
精选五区
精选四区
精选三区
精选二区
精选一区
书库四区
书库三区
书库二区
书库一区
稀缺二区
稀缺一区
精选素材
知识学院二区
知识学院一区
主页
/
【云课堂专区】
/
【分类课程合集】
/
【人工智能合集】
/
上百G数据分析资料
/
012_Mining Massive Datasets
/
Mining Massive Datasets - Stanford
/
2 - 1 - Distributed File Systems (15-50).mp4
2 - 10 - Why Teleports Solve the Problem (12-26).mp4
2 - 11 - How we Really Compute PageRank (13-49).mp4
2 - 2 - The MapReduce Computational Model (22-04).mp4
2 - 3 - Scheduling and Data Flow (12-43).mp4
2 - 4 - Combiners and Partition Functions (12-17) [Advanced].mp4
2 - 5 - Link Analysis and PageRank (9-39).mp4
2 - 6 - PageRank- The Flow Formulation (9-16).mp4
2 - 7 - PageRank- The Matrix Formulation (8-02).mp4
2 - 8 - PageRank- Power Iteration (10-34).mp4
2 - 9 - PageRank- The Google Formulation (12-08).mp4
3 - 1 - Finding Similar Sets (13-37).mp4
3 - 10 - A-Priori Algorithm (13-07).mp4
3 - 11 - Improvements to A-Priori (17-26) [Advanced].mp4
3 - 12 - All or Most Frequent Itemsets in 2 Passes (14-40) [Advanced].mp4
3 - 2 - Minhashing (25-18).mp4
3 - 3 - Locality-Sensitive Hashing (19-24).mp4
3 - 4 - Applications of LSH (11-40).mp4
3 - 5 - Fingerprint Matching (7-07).mp4
3 - 6 - Finding Duplicate News Articles (6-08).mp4
3 - 7 - Distance Measures (22-39).mp4
3 - 8 - Nearest Neighbor Learning (11-39).mp4
3 - 9 - Frequent Itemsets (29-50).mp4
4 - 1 - Community Detection in Graphs- Motivation (5-44).mp4
4 - 10 - Spectral Graph Partitioning- Finding a Partition (13-25) [Advanced].mp4
4 - 11 - Spectral Clustering- Three Steps (7-17) [Advanced].mp4
4 - 12 - Analysis of Large Graphs- Trawling (9-02) [Advanced].mp4
4 - 13 - Mining Data Streams (12-01).mp4
4 - 14 - Counting 1-'s (29-00) [Advanced].mp4
4 - 15 - Bloom Filters (18-00).mp4
4 - 16 - Sampling a Stream (11-30).mp4
4 - 17 - Counting Distinct Elements (25-59) [Advanced].mp4
4 - 2 - The Affiliation Graph Model (10-04).mp4
4 - 3 - From AGM to BIGCLAM (8-48).mp4
4 - 4 - Solving the BIGCLAM (9-19).mp4
4 - 5 - Detecting Communities as Clusters (8-39) [Advanced].mp4
4 - 6 - What Makes a Good Cluster- (8-48) [Advanced].mp4
4 - 7 - The Graph Laplacian Matrix (6-51) [Advanced].mp4
4 - 8 - Examples of Eigendecompositions of Graphs (6-16) [Advanced].mp4
4 - 9 - Defining the Graph Laplacian (3-27) [Advanced].mp4
5 - 1 - Overview of Recommender Systems (16-51).mp4
5 - 10 - Dimensionality Reduction- Introduction (12-01).mp4
5 - 11 - Singular-Value Decomposition (13-39).mp4
5 - 12 - Dimensionality Reduction with SVD (9-04).mp4
5 - 13 - SVD Gives the Best Low-Rank Approximation (8-28) [Advanced].mp4
5 - 14 - SVD Example and Conclusion (11-58).mp4
5 - 15 - CUR Decomposition (6-27) [Advanced].mp4
5 - 16 - The CUR Algorithm (6-15) [Advanced].mp4
5 - 17 - Discussion of the CUR Method (7-09).mp4
5 - 2 - Content-Based Recommendations (21-00).mp4
5 - 3 - Collaborative Filtering (20-52).mp4
5 - 4 - Implementing Collaborative Filtering (13-46) [Advanced].mp4
5 - 5 - Evaluating Recommender Systems (6-09).mp4
5 - 6 - Latent-Factor Models (16-11).mp4
5 - 7 - Latent-Factor Recommender System (14-16).mp4
5 - 8 - Finding the Latent Factors (13-20).mp4
5 - 9 - Extension to Include Global Effects (9-42) [Advanced].mp4
6 - 1 - Overview of Clustering (8-46).mp4
6 - 2 - Hierarchical Clustering (14-07).mp4
6 - 3 - The k-Means Algorithm (12-49).mp4
6 - 4 - The BFR Algorithm (25-01).mp4
6 - 5 - The CURE Algorithm (15-13) [Advanced].mp4
6 - 6 - Computational Advertising- Bipartite Graph Matching (24-47).mp4
6 - 7 - The AdWords Problem (19-21).mp4
6 - 8 - The Balance Algorithm (15-16).mp4
6 - 9 - Generalized Balance (14-35) [Advanced].mp4
7 - 1 - Support Vector Machines- Introduction (7-30).mp4
7 - 10 - Building Decision Trees Using MapReduce (8-14) [Advanced].mp4
7 - 11 - Decision Trees- Conclusion (7-25).mp4
7 - 12 - MapReduce Algorithms Part I (10-51) [Advanced].mp4
7 - 13 - MapReduce Algorithms Part II (9-46) [Advanced].mp4
7 - 14 - Theory of MapReduce Algorithms (19-39) [Advanced].mp4
7 - 15 - Matrix Multiplication in MapReduce (24-48) [Advanced].mp4
7 - 2 - Support Vector Machines- Mathematical Formulation (12-15).mp4
7 - 3 - What is the Margin- (8-22).mp4
7 - 4 - Soft-Margin SVMs (9-46).mp4
7 - 5 - How to Compute the Margin (14-36) [Advanced].mp4
7 - 6 - Support Vector Machines- Example (7-07).mp4
7 - 7 - Decision Trees (8-33).mp4
7 - 8 - How to Construct a Tree (13-21).mp4
7 - 9 - Information Gain (9-50).mp4
8 - 1 - LSH Families (21-13).mp4
8 - 10 - Hubs and Authorities (15-16) [Advanced].mp4
8 - 11 - Web Spam- Introduction (6-50).mp4
8 - 12 - Spam Farms (8-00).mp4
8 - 13 - TrustRank (10-05).mp4
8 - 2 - More About LSH Families (12-57).mp4
8 - 3 - Sets and Strings With a High Degree of Similarity (11-29) [Advanced].mp4
8 - 4 - Prefix of a String (7-43) [Advanced].mp4
8 - 5 - Positions Within Prefixes (14-04) [Advanced].mp4
8 - 6 - Exploiting Length (14-39) [Advanced].mp4
8 - 7 - Computing PageRank on Big Graphs (10-18) [Advanced].mp4
8 - 8 - Topic-Specific PageRank (10-06).mp4
8 - 9 - Application to Measuring Proximity in Graphs (6-25).mp4
Mining_Massive_Datasets_Stanford_slides.zip
Mining_Massive_Datasets_Stanford_subtitles.zip
Copyright © All rights reserved.
信息加载中,请等待...